, , , , , , , , , , , , ,

That’s the title of our new paper, hot off the PNAS press. This study was a lot of fun, because it combines my food web work with one of the best known events in the fossil record. The lead author is Jonathan Mitchell, a graduate student at the University of Chicago. Jon became familiar with the food web work via Ken Angielczyk at the Field Museum, also in Chicago, a former post-doctoral researcher in my lab and close collaborator.  Jon wondered what Late Cretaceous, dinosaur-bearing communities would look like when subjected to CEG perturbations (just search this blog for info. on CEG!), and presented his results two years ago at the Annual Meeting of the Geological Society of America. The results were so intriguing that we decided then to explore the question in much greater detail, and ask what sorts of community and ecosystem changes unfolded in the years before the Chicxulub impact, and what role they might have played in the subsequent extinctions. And here are the results! I will list the full reference below, and you can obtain a complete copy of the paper from PNAS (sorry, not open access). Also, here are links to some news websites that have covered the paper, as well as the paper’s abstract. Enjoy!

EurekAlert, Science Daily, Science Codex

Jonathan S. Mitchell, Peter D. Roopnarine, and Kenneth D. Angielczyk. Late Cretaceous restructuring of terrestrial communities facilitated the End-Cretaceous mass extinction in North America. PNAS, October 29, 2012


The sudden environmental catastrophe in the wake of the end-
Cretaceous asteroid impact had drastic effects that rippled through
animal communities. To explore how these effects may have been
exacerbated by prior ecological changes, we used a food-web
model to simulate the effects of primary productivity disruptions,
such as those predicted to result from an asteroid impact, on ten
Campanian and seven Maastrichtian terrestrial localities in North
America. Our analysis documents that a shift in trophic structure
between Campanian and Maastrichtian communities in North
America led Maastrichtian communities to experience more second-
ary extinction at lower levels of primary production shutdown and
possess a lower collapse threshold than Campanian communities.
Of particular note is the fact that changes in dinosaur richness had
a negative impact on the robustness of Maastrichtian ecosystems
against environmental perturbations. Therefore, earlier ecological
restructuring may have exacerbated the impact and severity of the
end-Cretaceous extinction, at least in North America.