• What is this stuff?

Roopnarine's Food Weblog

~ Ramblings and musings in evolutionary paleoecology

Roopnarine's Food Weblog

Tag Archives: paleo-food web

Abstract spaces for unknown ecologies

13 Tuesday Oct 2015

Posted by proopnarine in Ecology, extinction, Scientific models

≈ Leave a comment

Tags

food webs, metanetwork, paleo-food web, Permian-Triassic extinction, Scientific models

A guild-level food web for the Karoo Basin ecosystem.

A guild-level food web for the Karoo Basin ecosystem.

At the heart of our paper lies a model framework which we devised for analyzing fossil food webs. I stated in the previous post that our main question was “How would those food webs (important parts of the paleoecosystems) have responded to everyday types of disturbances, on the short-term, as the planet was busily falling apart?” We could approach this question in several different ways if we were working with modern food webs. We could conduct manipulative experiments with simple mock-ups of the food web, using for example some of what we believe to be the key species to represent the community. Or, we could conduct large scale manipulations, such as removing a species entirely; but that is very difficult to do, or to obtain permission! Or, we could measure variables such as species population sizes, how species interact with each other, and so forth, to then conduct numerical analyses and simulations. None of those approaches are available to us when dealing with ancient, extinct ecosystems. Therefore, what we did instead was to use the most accurate information that we have for each paleoecosystem, which consisted of categorizing species into “guilds”. Here, a guild is a group of species who shared the same habitat, and  potentially shared the same predators and prey. The “potentially” is based on our best interpretations of the ecologies of those extinct species, because without actually being there to witness their interactions (back to that Tardis again), we cannot be sure. The result is usually something like the box figure above. Even with species lumped, you can see how complex and busy the system would have been! And from this guild-level model, we can then construct many many different food webs, tweaking the specific links between species. An example is shown in the second figure.

Now, the number of different food webs that you could generate based on even a modest number of species, say 20, and a few guilds, is astronomically large (in fact beyond astronomical). The important thing, however, is that all of them would be consistent with the guild scheme. Let me give an example. Say we did a guild scheme for the modern African savannah. We would be justified to some extent to place lions and hyaenas in the same guild. We might not know exactly which antelope species (for example) each predator species was preying on, but we would never draw a food web where antelope were preying on lions, hyaenas or each other! So, what we have done for our food webs is constructed a mathematical space that contains all the food webs which could possibly have existed in our paleoecosystem. In other words, we have taken the full set of food webs that could be constructed for a certain number of species, and constrained ourselves to consider only those that are consistent with our accurate knowledge of the guild structure.

Detail of one possible food web just prior to the mass extinction.

Detail of one possible food web just prior to the mass extinction.

This still doesn’t solve the problem of how those food webs would have responded to various types of disturbances in the distant past. And in fact, we really cannot solve that problem, so we did what we think is the next best thing. We asked if there was anything special about those food webs, compared to any others that were not consistent with our guild structure. In other words, what if the ecosystem had evolved a bit differently, and comprised species a bit different from what we actually observe in the fossil record? We considered a number of such alternative models, differing from the real ecosystem in ways such as moving species around in the guilds, or moving guilds and the interactions between them, or removing guilds altogether. And each time we did that, and generated a food web from the new guild scheme, we examined the stability of the food web. Exactly what we mean by stability, and how we measured it, will be the subject of the next post.

Is the past a key to the future?

05 Monday Oct 2015

Posted by proopnarine in Ecology, extinction, Publications

≈ Leave a comment

Tags

extinction, food webs, paleo-food web, paleontology, Permian-Triassic extinction

Time travel anyone? (BBC)

Time travel anyone? (BBC)

One of the main motivations for our most recent paper (available here) was to gain insight into how modern ecosystems might behave in the future as they are subjected to increasing human-driven stresses. “Global change” biology is an emerging field that seeks to understand how the biosphere will change in response to factors such as ongoing climate change, habitat loss, landscape transformation, and so forth. Much of the work in this area rightfully focuses on measuring change, working to understand how modern ecosystems work, and projecting how they might respond in the future. The effort is ongoing, and includes theoretical work, controlled experiments, and uncontrolled impacts on natural systems. A limitation of these efforts, however, is the magnitude of the changes that are available for study. For example, we can observe how species are moving in space right now in response to rising environmental temperatures, or how they are adapting (or not) to drought conditions, but we cannot observe how they will respond in the future as those stressors continue to increase in magnitude. No one realistically expects the responses to increase linearly; we fully expect nonlinear, hard-to-predict, surprises. That was the message of an earlier paper, and a focus of a lot of current work on critical ecosystem transitions. One way to address this concern, and the one that we’ve taken, is to look back into Earth’s past, to times when the planet was similarly undergoing major changes. Those were natural experiments; times when ecosystems were subjected to extreme environmental stresses. The problem there of course is that we don’t have a Tardis, and all our information has to come from evidence that has been preserved in the geological record, and our ability to interpret it. Yes, the natural experiments were performed, but as I like to say, either no one kept notes, or the notebook was chewed up by the family dog before anyone had a chance to read it.

So where does that leave us? It leaves us with an incomplete record yes, but it’s also the only record of how the biosphere has responded to truly dire circumstances. Our challenge is to take this incomplete record, and to extract from it data and ideas that are useful for forecasting how the biosphere might respond to future dire circumstances. In the case of our present study, we were able to take advantage of first-rate field paleontology, first-rate organismal paleontology, recent developments in theoretical ecology, and to combine those with our own methods for reconstructing paleo-food webs. And the main question which we were interested in was, “How would those food webs (important parts of the paleoecosystems) have responded to everyday types of disturbances, on the short-term, as the planet was busily falling apart?”

And the planet really was in trouble at the end of the Permian 252 million years ago. Siberia had opened up in one of the most magnificent episodes of volcanism in the last half billion years. Recent dating suggests the volcanism started about 300,000 years before the marine extinctions, and may have continued intermittently for another 500,000 years after. The knock-on effects probably included greenhouse warming, sulphurous atmosphere, ocean acidification and reductions of oceanic oxygen concentrations. In southern Africa, the location of the terrestrial ecosystem which we studied, the stage was set for a catastrophe of global proportions.

A new paper on the Permian-Triassic mass extinction

02 Friday Oct 2015

Posted by proopnarine in Ecology, extinction, Scientific models

≈ 4 Comments

Tags

biodiversity, extinction, food webs, modeling, paleo-food web, paleontology, Permian-Triassic extinction, Scientific models

Dicynodon graphite plants flt

Dicynodon, an ancient relative of mammals, at the end of the Permian. (Marlene Hill Donnelly).

Yesterday, Ken Angielczyk and I published our most recent paper on the Permian-Triassic mass extinction (PTME) in the journal Science. In a nutshell, we examined a series of paleocommunities spanning the extinction, from the Late Permian to the Middle Triassic, and modelled the stability of their food webs. We compared the models to hypothetical alternatives, where we varied parameters such as how species are divided among guilds, or ecological “jobs”, and the numbers of interactions that species have. One of our very interesting discoveries is that the real food webs were always the most stable, or amongst the most stable of the models, even during the height of the extinction! That’s remarkable, given the devastating loss of species at the end of the Permian. Our other discovery is that the ability to remain highly stable during the extinction stemmed from the more rapid extinction of small, terrestrial vertebrate species. That’s not something we would predict given our experience with modern and ongoing extinctions, where larger vertebrate species are considered to be at greater risk. And finally, our last interesting observation is that the early recovery, the immediate aftermath during the Early Triassic, was an exception to the above. That community was not particularly stable, which seems to have been the result of the rapid evolutionary diversification of the extinction survivors, and the arrival of immigrants from neighbouring regions.

Some aspects of the paper are quite technical, and take advantage of fantastic new paleontological data and recent developments in theoretical ecology. Therefore, over the next few posts I’ll go through what we did, and how we did it, using a more “plain language” approach. In the meanwhile, the paper was covered by a number of news outlets, and here’s my favourite!

“5 things we learned from the mass extinction study that’s “the first of its kind”“, The Irish Examiner.

Upcoming lecture

24 Friday Apr 2015

Posted by proopnarine in Ecology, extinction

≈ Leave a comment

Tags

extinction, food webs, modeling, paleo-food web, paleontology, Scientific models

I will be giving a lecture on Tuesday, April 28th, at Swarthmore College in the Department of Mathematics and Statistics. If you’re in the area, please stop by!
2014_Roopnarine_poster

RESILIENCE AND STABILITY OF PERMO-TRIASSIC KAROO BASIN COMMUNITIES

03 Monday Nov 2014

Posted by proopnarine in CEG theory, Ecology, Evolution, extinction

≈ Leave a comment

Tags

biodiversity, extinction, food webs, modeling, paleo-food web, paleontology, simulations, trophic guild

Late Permian community dynamics

Late Permian community dynamics

This is the second presentation that I made at the Annual Conference of the Geological Society of America in Vancouver last month. The presentation was part of a special session, “Extreme Environmental Conditions and Biotic Responses during the Permian-Triassic Boundary Crisis and Early Triassic Recovery”, co-organized my myself, Tom Algeo, Hugo Bucher and Arne Winguth. The session, spanning two days, was excellent, outstanding, and a lot of fun! I came away with the firm conviction that we are beginning to really understand the massive Permo-Triassic mass extinction, from its causes to consequences to recovery. It truly was a watershed “moment” in the history of the biosphere. The full program for both days can be found here and here. And, here is the abstract. An online copy of the presentation is available here.

RESILIENCE AND STABILITY OF PERMO-TRIASSIC KAROO BASIN COMMUNITIES: THE IMPORTANCE OF SPECIES RICHNESS AND FUNCTIONAL DIVERSITY TO ECOLOGICAL STABILITY AND ECOSYSTEM RECOVERY

ROOPNARINE, Peter, Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Dr, Golden Gate Park, San Francisco, CA 94118, proopnarine@calacademy.org and ANGIELCZYK, Kenneth D., Department of Geology, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605

A central question of the P/Tr extinction is the manner in which Permian ecological communities collapsed and E. Triassic ones were built. The end Permian Dicynodon Assemblage Zone (DAZ) has recently been resolved into 3 phases of the extinction spanning ~120ky, followed by the E. Triassic (Induan) Lystrosaurus Assemblage Zone (LAZ), offering an opportunity to examine the ecological dynamics of extinction and recovery in enhanced detail. We do this with 2 modelling approaches.

The first model assumes that populations exist in an energetic balance between consumption and predation. Communities are modelled as stochastic variants sampled from a space defined by species richness and functional diversity. Paleoenvironmental data from the DAZ indicate an increasingly seasonal, arid and drought-prone environment. The models were perturbed by simulated reductions of primary productivity. Results show that DAZ Phase 0 (Ph0) was a robust community resistant to low-moderate levels of perturbation with a well-defined collapse threshold. DAZ Ph1 and Ph2, however, exhibit highly variable responses and are significantly less resistant. LAZ similarly exhibits highly variable responses across minor variation of model configurations.

The second model assumes that communities are locally stable, i.e. minor perturbations are followed by asymptotic returns to equilibrium. During this return, however, communities can exhibit transient behavior during which perturbations can be greatly amplified. Amplification is likely to be important in unstable environments when the frequency of perturbations is shorter than the return time to equilibrium. Applying this model to DAZ and LAZ communities shows that the Karoo ecosystem became more limited in its responses to perturbation as the P/Tr boundary was approached, with Ph1 and Ph2 communities exhibiting very little transient behavior. LAZ in contrast exhibits increased transience.

The energetics and stability models are reconcilable in a history where the Karoo ecosystem became more ecologically stable as the extinction unfolded, yet more sensitive to cascading effects of species extinction and reductions of productivity. The Induan ecosystem was an unrecovered one, sensitive to both extinction and minor ecological disturbances.

Modern and paleocommunity analogues

29 Wednesday Oct 2014

Posted by proopnarine in CEG theory, Ecology

≈ Leave a comment

Tags

connectance, coral reef, food webs, marine communities, modeling, Network theory, networks, paleo-food web, paleontology, real world networks, Scientific models, trophic guild, trophic level

Roopnarine-04Last week I gave a keynote presentation at the annual conference of the Geological Society of America in Vancouver. Here is the abstract, and a link to the presentation (pdf file).

ANCIENT AND MODERN COMMUNITIES AS RECIPROCAL ANALOGUES OF PERSISTENCE AND STABILITY

ROOPNARINE, Peter, Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Dr, Golden Gate Park, San Francisco, CA 94118, proopnarine@calacademy.org
Paleocommunities are spatio-temporally averaged communities structured by biotic interactions and abiotic factors. The best data on paleocommunity structures are estimates of species richness, number of biotic interactions and the topology of interactions. These provide insights into paleoecological dynamics if modern communities are used as analogs; e.g., the recent lionfish invasion of the western Atlantic is the first modern invasion of a marine ecosystem by a high trophic-level predator and serves as an analog for the invasion of paleocommunities by new predators during the Mesozoic Marine Revolution. Despite the invader’s broad diet, it targets very specific parts of the invaded food web. This will lead to non-uniform escalation on evolutionary timescales.

Theoretical ecology provides a rich framework for exploring dynamics of community persistence. Persistence–the stability of species richness and composition on geological timescales–is central to paleoecology. Ecological stability, a community’s return to stability after perturbation, is not necessary for geological persistence. However, it does dictate a community’s response to perturbation, and thus a species’ persistence or extinction. What then is the relationship between paleoecological richness/composition and ecological stability? How do communities respond to losses of species richness or ecological function? Questions of stability and diversity loss are addressed with an examination of transient responses and species deletion stability analyses of end-Permian terrestrial paleocommunities of the Karoo Basin. Transience is measured as the degree to which a perturbation is amplified over ecological time, even as a community returns asymptotically to stability. Transience during times of frequent perturbation, as during times of environmental crises, decreases the likelihood of a persistently stable community. Species deletion stability measures the dynamic response of a community to the loss of single species. It is an open question whether communities become more vulnerable or more resistant during environmental crises. That process, which has occurred repeatedly in the geological past, is important to the fate of threatened modern communities.

Science Today: Studying paleo-food webs

08 Tuesday Oct 2013

Posted by proopnarine in CEG theory, Ecology, extinction

≈ Leave a comment

Tags

california academy of sciences, extinction, food webs, paleo-food web, paleontology

One of the most important ways species interact in an ecosystem? Food Webs. Learn how researchers study paleo and present-day food webs.
From the California Academy of Sciences.

PNAS: Late Cretaceous restructuring of terrestrial communities facilitated the End-Cretaceous mass extinction in North America

30 Tuesday Oct 2012

Posted by proopnarine in CEG theory, Ecology, Evolution, extinction, Robustness, Scientific models, Tipping point

≈ 1 Comment

Tags

Cretaceous, dinosaurs, extinction, food webs, mass extinction, modeling, networks, paleo-food web, paleontology, Robustness, Scientific models, simulations, Tipping point, trophic guild

That’s the title of our new paper, hot off the PNAS press. This study was a lot of fun, because it combines my food web work with one of the best known events in the fossil record. The lead author is Jonathan Mitchell, a graduate student at the University of Chicago. Jon became familiar with the food web work via Ken Angielczyk at the Field Museum, also in Chicago, a former post-doctoral researcher in my lab and close collaborator.  Jon wondered what Late Cretaceous, dinosaur-bearing communities would look like when subjected to CEG perturbations (just search this blog for info. on CEG!), and presented his results two years ago at the Annual Meeting of the Geological Society of America. The results were so intriguing that we decided then to explore the question in much greater detail, and ask what sorts of community and ecosystem changes unfolded in the years before the Chicxulub impact, and what role they might have played in the subsequent extinctions. And here are the results! I will list the full reference below, and you can obtain a complete copy of the paper from PNAS (sorry, not open access). Also, here are links to some news websites that have covered the paper, as well as the paper’s abstract. Enjoy!

EurekAlert, Science Daily, Science Codex

Jonathan S. Mitchell, Peter D. Roopnarine, and Kenneth D. Angielczyk. Late Cretaceous restructuring of terrestrial communities facilitated the End-Cretaceous mass extinction in North America. PNAS, October 29, 2012

ABSTRACT

The sudden environmental catastrophe in the wake of the end-
Cretaceous asteroid impact had drastic effects that rippled through
animal communities. To explore how these effects may have been
exacerbated by prior ecological changes, we used a food-web
model to simulate the effects of primary productivity disruptions,
such as those predicted to result from an asteroid impact, on ten
Campanian and seven Maastrichtian terrestrial localities in North
America. Our analysis documents that a shift in trophic structure
between Campanian and Maastrichtian communities in North
America led Maastrichtian communities to experience more second-
ary extinction at lower levels of primary production shutdown and
possess a lower collapse threshold than Campanian communities.
Of particular note is the fact that changes in dinosaur richness had
a negative impact on the robustness of Maastrichtian ecosystems
against environmental perturbations. Therefore, earlier ecological
restructuring may have exacerbated the impact and severity of the
end-Cretaceous extinction, at least in North America.

Instability in the Early Triassic!

03 Thursday Nov 2011

Posted by proopnarine in CEG theory, extinction

≈ 1 Comment

Tags

competition, extinction, modeling, networks, paleo-food web, paleontology, Permian-Triassic, Scientific models

In a recent paper in the Royal Society Proceedings B, Randy Irmis and Jessica Whiteside verify a prediction of the CEG model regarding earliest Triassic terrestrial communities of the Karoo Basin in South Africa. Ken Angielczyk and I were interviewed by Wired Science for an article about the paper. Read it all here!

We predicted that communities in the Lystrosaurus Assemblage Zone would exhibit intrinsic instability in the face of even mild disruptions of primary productivity. More recently (and here), we explained that the intrinsic instability stemmed from the rapid diversification of small to medium-sized synapsid carnivores in the aftermath of the end-Permian mass extinction, coupled with very low species richness of herbivorous tetrapod prey, and the resulting intensity of competitive interactions among the carnivores. The recent Proceedings B paper seems to support our prediction on the basis of relative abundances of species of different trophic ecologies, characterizing those species as “boom and bust”. It’s always great to have model verification!

I think that there are some unresolved questions though:

  1. We also suggested that one way out of the conundrum would be the increased specialization of the carnivores. Contrary to Irmis and Whiteside, I don’t agree that uneven relative abundances necessarily lead to demographic boom and bust cycles. Community dynamics are more nuanced and flexible than that.
  2. The authors also point to probable environmental instability based on carbon cycles (measured as carbon stable isotope signatures). They valiantly overlap the short Karoo signature with the much longer and highly resolved marine signature. We simply have no good correlation of these signatures, and this is at least a nice attempt to highlight this ongoing issue.

Whether you can observe a thing or not depends on the theory which you use. (Einstein)

A species’s tragedy of the commons

24 Wednesday Aug 2011

Posted by proopnarine in CEG theory, Evolution, extinction, Network theory, Publications, Robustness, Scientific models, Tipping point

≈ 2 Comments

Tags

biodiversity, carrying capacity, cascades, competition, extinction, food webs, interaction strength, link distribution, link strength, modeling, networks, paleo-food web, paleontology, Robustness, Scientific models, simulations, Tipping point, trophic guild

At play, Chanthaburi River, Thailand

My colleague Ken Angielczyk and I have a new paper out in the Royal Society‘s Biology Letters, entitled “The evolutionary palaeoecology of species and the tragedy of the commons“. If you have never read Garrett Hardin’s original paper on the tragedy of the commons, I strongly suggest that you do. It is a principle that I believe has broad application, and would well be worth a re-visit (first visit?!) by today’s leaders and economists. Our paper can be found here or here (first page only). And here is the abstract, as a little teaser!

Abstract

The fossil record presents palaeoecological pat-
terns of rise and fall on multiple scales of time
and biological organization. Here, we argue that
the rise and fall of species can result from a tragedy
of the commons, wherein the pursuit of self-inter-
ests by individual agents in a larger interactive
system is detrimental to the overall performance
or condition of the system. Species evolving
within particular communities may conform to
this situation, affecting the ecological robustness
of their communities. Results from a trophic
network model of Permian–Triassic terrestrial
communities suggest that community perform-
ance on geological timescales may in turn
constrain the evolutionary opportunities and
histories of the species within them.

← Older posts

Blog Stats

  • 66,361 hits

Categories

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 1,373 other followers

Copyright

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Blog at WordPress.com.

  • Follow Following
    • Roopnarine's Food Weblog
    • Join 1,373 other followers
    • Already have a WordPress.com account? Log in now.
    • Roopnarine's Food Weblog
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...