• What is this stuff?

Roopnarine's Food Weblog

~ Ramblings and musings in evolutionary paleoecology

Roopnarine's Food Weblog

Category Archives: CEG theory

Comparing mass extinctions

13 Tuesday Apr 2021

Posted by proopnarine in CEG theory, Ecology, extinction, mass extinction, paleoecology, Publications

≈ 2 Comments

Tags

mass extinction

The plant-eating pareiasaurs were preyed on by sabre-toothed gorgonopsians. Both groups died out during the end-Permian mass extinction, or “The Great Dying.” CREDIT: © Xiaochong Guo

Yuangeng Huang was a recent post-doctoral researcher in my lab at the California Academy of Sciences. Several years ago, while conducting his Ph.D. research at the China University of Geosciences (CUG) in Wuhan, Yuangeng trekked over to the United States and spent about six months in my lab, where he learned a great deal about the sorts of paleoecological modeling that we do. Then after completing his Ph.D., he joined me in my lab in the fall of 2019 as a post-doc. This was ideal, as part of Yuangeng’s dissertation research was on late Paleozoic and early Mesozoic terrestrial faunas from the Xinjiang region of China, which coincided with a large collaborative project in the Integrated Earth Systems program at the US NSF, of which I am a part. Yuangeng and I had great plans for the coming year, but of course 2020 was anything but a normal year. Unfortunately Yuangeng spent much of his time in the COVID-19 lockdown, along with most residents of the California Bay Area. Nevertheless, we adjusted as had so many other people around the world, and we did manage to do some very nice work, in my opinion. Yuangeng headed back to Wuhan in the fall of 2020 to take up a new position at CUG.

The first product of our time together is a recent paper published in the Royal Society Proceedings B, entitled “Ecological dynamics of terrestrial and freshwater ecosystems across three mid-Phanerozoic mass extinctions from northwest China“. In the paper we examined a span of 121 million years, comparing three mass extinctions: the end-Guadalupian event, the end Permian, and the Triassic-Jurassic transition. The end Permian mass extinction is by far the most severe recorded in the geological record. We compared the stabilities of terrestrial-aquatic communities within this span by reconstructing functional networks and food webs of the communities, and using mathematical models to subject them to disruptions of primary productivity (photosynthesis). The results of such perturbations are disruptions of populations, and eventually extinctions as the magnitude of the perturbations increases. What we found is that the two smaller events struck at times when communities were at relatively lower stability compared to the end Permian, but that recovery after the latter event was significantly more prolonged. This is yet a bit more evidence of the uniqueness of the end Permian extinction and the Permian-Triassic transition. Interestingly our results here are consistent with results for similar examinations of coeval communities from the Karoo Basin of South Africa, despite those communities being both taxonomically and ecologically different from the Xinjiang communities.

Comparing the stabilities of late Palezoic and early Mesozoic communities from northwest China (Huang et al., 2021). “Collapse threshold” is the point at which a community collapses when subjected to disruptions of primary productivity.

The paper is the result of a great collaboration, led by Yuangeng, involving researchers from China (including Yuangeng’s dissertation advisor, Zhong-Qiang Chen), the United States (including Wan Yang and myself), and the United Kingdom (Michael Benton). There are important communities from these times preserved elsewhere in the world (Russia, Brazil, Australia), giving us the potential to eventually truly understand the dynamics underlying these important events in biodiversity’s history.

And here is the link to a very nice commentary from the great science communications team at the Academy, “How Life on Land Recovered After “The Great Dying” Mass Extinction Event.”

New paper: Comparing paleo-ecosystems

30 Friday Mar 2018

Posted by proopnarine in CEG theory, Ecology, Evolution, extinction, Scientific models, Uncategorized

≈ 2 Comments

Tags

dynamics, ecology, evolution, modeling

blog_post_figure

Modeled ecological dynamics in South Africa 1 million years after the end Permian mass extinction, showing the highly uncertain response of the community to varying losses of primary production.

We have a new paper on paleo-food web dynamics in the Journal of Vertebrate Paleontology! The paper is one in a collection of 13 (and 27 authors), all focused on the “Vertebrate and Climatic Evolution in the Triassic Rift Basins of Tanzania and Zambia”. The collection covers work done in the Luangwa and Ruhuhu Basins of Zambia and Tanzania, surveying the vertebrates who lived there during the Middle Triassic, approximately 245 million years ago (mya). This is a very interesting period in the Earth’s history, being only a few million years after the devastating end Permian mass extinction (251 mya). They are also very interesting places, capturing some of our earliest evidence of the rise of the reptilian groups which would go on to dominate the terrestrial environment for the next 179 million years. The evidence includes Teleocrater, one of the earliest members of the evolutionary group that includes dinosaurs and modern birds.

Our paper, “Comparative Ecological Dynamics Of Permian-Triassic Communities From The Karoo, Luangwa And Ruhuhu Basins Of Southern Africa” is exactly that, a comparison of the ecological communities of southern Africa before, during and after the mass extinction. Most of our knowledge of how the terrestrial world was affected by, and recovered from the mass extinction comes for extensive work on the excellent fossil record in the Karoo Basin of South Africa, but that leaves us wondering how applicable that knowledge is to the rest of the world. We therefore set out to discover how similar or varied the ecosystems were over this large region, comparing both the functional structures (what were the ecological roles and ecosystem functions) and modeling ecological dynamics across the relevant times and spaces of southern Africa. We discovered that during the late Permian, before the extinction, the three regions (South Africa, Tanzania, Zambia) were very similar. In the years leading up to the extinction, however, communities in South Africa were changing, becoming more robust to disturbances, but the change seemed slower to happen further to the north. The record becomes silent during the mass extinction, and for millions of years afterward, but when it does pick up again in the Middle Triassic of Tanzania, the communities in South Africa and Tanzania are quite distinct in their composition. The ecosystem in South Africa was dominated by amphibians and ancient relatives of ours, whereas to the north we see the earliest evidence of the coming Age of Reptiles. Yet, and this is where modeling can become so cool, the two systems seemed to function quite similarly. We believe that this a result of how the regions recovered from the mass extinction. Evolutionarily, they took divergent paths, but the organization of new ecosystems under the conditions which prevailed after the mass extinction lead to two different sets of evolutionary players, in two different geographic regions, playing the same ecological game. As we say in the paper, “This implies that ecological recovery of the communities in both areas proceeded in a similar way, despite the different identities of the taxa involved, corroborating our hypothesis that there are taxon-independent norms of community assembly.”

And finally, this work would not have been possible without the generous support of the United States National Science Foundation’s Earth Life Transitions program.

A very brief introduction

14 Saturday Jan 2017

Posted by proopnarine in CEG theory, Ecology, extinction, Uncategorized, Visualization

≈ Leave a comment

Tags

dynamics

This is a very short video about our work and the questions that we ask. Courtesy of the Academy‘s Visualization Studio.

RESILIENCE AND STABILITY OF PERMO-TRIASSIC KAROO BASIN COMMUNITIES

03 Monday Nov 2014

Posted by proopnarine in CEG theory, Ecology, Evolution, extinction

≈ Leave a comment

Tags

biodiversity, extinction, food webs, modeling, paleo-food web, paleontology, simulations, trophic guild

Late Permian community dynamics

Late Permian community dynamics

This is the second presentation that I made at the Annual Conference of the Geological Society of America in Vancouver last month. The presentation was part of a special session, “Extreme Environmental Conditions and Biotic Responses during the Permian-Triassic Boundary Crisis and Early Triassic Recovery”, co-organized my myself, Tom Algeo, Hugo Bucher and Arne Winguth. The session, spanning two days, was excellent, outstanding, and a lot of fun! I came away with the firm conviction that we are beginning to really understand the massive Permo-Triassic mass extinction, from its causes to consequences to recovery. It truly was a watershed “moment” in the history of the biosphere. The full program for both days can be found here and here. And, here is the abstract. An online copy of the presentation is available here.

RESILIENCE AND STABILITY OF PERMO-TRIASSIC KAROO BASIN COMMUNITIES: THE IMPORTANCE OF SPECIES RICHNESS AND FUNCTIONAL DIVERSITY TO ECOLOGICAL STABILITY AND ECOSYSTEM RECOVERY

ROOPNARINE, Peter, Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Dr, Golden Gate Park, San Francisco, CA 94118, proopnarine@calacademy.org and ANGIELCZYK, Kenneth D., Department of Geology, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605

A central question of the P/Tr extinction is the manner in which Permian ecological communities collapsed and E. Triassic ones were built. The end Permian Dicynodon Assemblage Zone (DAZ) has recently been resolved into 3 phases of the extinction spanning ~120ky, followed by the E. Triassic (Induan) Lystrosaurus Assemblage Zone (LAZ), offering an opportunity to examine the ecological dynamics of extinction and recovery in enhanced detail. We do this with 2 modelling approaches.

The first model assumes that populations exist in an energetic balance between consumption and predation. Communities are modelled as stochastic variants sampled from a space defined by species richness and functional diversity. Paleoenvironmental data from the DAZ indicate an increasingly seasonal, arid and drought-prone environment. The models were perturbed by simulated reductions of primary productivity. Results show that DAZ Phase 0 (Ph0) was a robust community resistant to low-moderate levels of perturbation with a well-defined collapse threshold. DAZ Ph1 and Ph2, however, exhibit highly variable responses and are significantly less resistant. LAZ similarly exhibits highly variable responses across minor variation of model configurations.

The second model assumes that communities are locally stable, i.e. minor perturbations are followed by asymptotic returns to equilibrium. During this return, however, communities can exhibit transient behavior during which perturbations can be greatly amplified. Amplification is likely to be important in unstable environments when the frequency of perturbations is shorter than the return time to equilibrium. Applying this model to DAZ and LAZ communities shows that the Karoo ecosystem became more limited in its responses to perturbation as the P/Tr boundary was approached, with Ph1 and Ph2 communities exhibiting very little transient behavior. LAZ in contrast exhibits increased transience.

The energetics and stability models are reconcilable in a history where the Karoo ecosystem became more ecologically stable as the extinction unfolded, yet more sensitive to cascading effects of species extinction and reductions of productivity. The Induan ecosystem was an unrecovered one, sensitive to both extinction and minor ecological disturbances.

Modern and paleocommunity analogues

29 Wednesday Oct 2014

Posted by proopnarine in CEG theory, Ecology

≈ Leave a comment

Tags

connectance, coral reef, food webs, marine communities, modeling, Network theory, networks, paleo-food web, paleontology, real world networks, Scientific models, trophic guild, trophic level

Roopnarine-04Last week I gave a keynote presentation at the annual conference of the Geological Society of America in Vancouver. Here is the abstract, and a link to the presentation (pdf file).

ANCIENT AND MODERN COMMUNITIES AS RECIPROCAL ANALOGUES OF PERSISTENCE AND STABILITY

ROOPNARINE, Peter, Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Dr, Golden Gate Park, San Francisco, CA 94118, proopnarine@calacademy.org
Paleocommunities are spatio-temporally averaged communities structured by biotic interactions and abiotic factors. The best data on paleocommunity structures are estimates of species richness, number of biotic interactions and the topology of interactions. These provide insights into paleoecological dynamics if modern communities are used as analogs; e.g., the recent lionfish invasion of the western Atlantic is the first modern invasion of a marine ecosystem by a high trophic-level predator and serves as an analog for the invasion of paleocommunities by new predators during the Mesozoic Marine Revolution. Despite the invader’s broad diet, it targets very specific parts of the invaded food web. This will lead to non-uniform escalation on evolutionary timescales.

Theoretical ecology provides a rich framework for exploring dynamics of community persistence. Persistence–the stability of species richness and composition on geological timescales–is central to paleoecology. Ecological stability, a community’s return to stability after perturbation, is not necessary for geological persistence. However, it does dictate a community’s response to perturbation, and thus a species’ persistence or extinction. What then is the relationship between paleoecological richness/composition and ecological stability? How do communities respond to losses of species richness or ecological function? Questions of stability and diversity loss are addressed with an examination of transient responses and species deletion stability analyses of end-Permian terrestrial paleocommunities of the Karoo Basin. Transience is measured as the degree to which a perturbation is amplified over ecological time, even as a community returns asymptotically to stability. Transience during times of frequent perturbation, as during times of environmental crises, decreases the likelihood of a persistently stable community. Species deletion stability measures the dynamic response of a community to the loss of single species. It is an open question whether communities become more vulnerable or more resistant during environmental crises. That process, which has occurred repeatedly in the geological past, is important to the fate of threatened modern communities.

Experimental Space

04 Saturday Oct 2014

Posted by proopnarine in Coral reefs, Ecology, Network theory, Visualization

≈ Leave a comment

Tags

coral reef, food webs, Network theory, networks

Cayman Islands coral reef food web

Cayman Islands coral reef food web

Hi everyone, if any of you will be in the San Francisco Bay Area in the coming month, there is an exhibition at the Aggregate Space Art Gallery, featuring scientific visualizations. A couple of pieces there are from my food web work! So please stop by. Here is the gallery’s announcement:

“In their search for evidence of theories that better explain our physical reality, scientists often discover unexpected and beautiful phenomena. The researchers who created the images and videos included in “Experimental Space” did not have an art gallery in mind while they worked. Nevertheless, the images, figures, and data on view are aesthetically compelling and seductive. Through this exhibition, Aggregate Space Gallery and BAASICS bring scientific images and perspectives from the laboratory and the academic journal to the realm of art, where subjectivity trumps objectivity and ambiguity is more celebrated than demystification.

Featuring Evidence by: Erin Jarvis Alberstat, PhD candidate; Roger Anguera, Multimedia Engineer; Daniel J. Cohen, PhD; Sara M. Freeman, PhD; Luke Gilbert, PhD; Angela Kaczmarczyk, PhD candidate; Arnaud Martin, PhD; Brian Null, PhD, and Dr. Peter D. Roopnarine, PhD.”

Links–
http://aggregatespace.com/
http://www.baasics.com/

Science Today: Studying paleo-food webs

08 Tuesday Oct 2013

Posted by proopnarine in CEG theory, Ecology, extinction

≈ Leave a comment

Tags

california academy of sciences, extinction, food webs, paleo-food web, paleontology

One of the most important ways species interact in an ecosystem? Food Webs. Learn how researchers study paleo and present-day food webs.
From the California Academy of Sciences.

Ecology and the Tragedy of the Commons

19 Tuesday Feb 2013

Posted by proopnarine in CEG theory, Ecology, Publications, Scientific models

≈ 1 Comment

Tags

real world networks, Robustness, Scientific models, tragedy of the commons

Well, it’s been quite some time since the last post, but I’ve been busy! This post is just a short notice of a new paper, just published today. The paper is part of a special issue on the Tragedy of the Commons in the journal Sustainability. My paper takes a comparative look at the Tragedy in ecological communities and human societies, and the potential of human mutualisms for avoiding tragedies. The situation is not a very hopeful one, however, given our ever-growing human population. Hardin did note this in his original essay. Finally, this paper was inspired by an earlier paper by myself and Ken Angielczyk.

Here’s a link to the paper, as well as the abstract.

Roopnarine, P. Ecology and the Tragedy of the Commons. Sustainability 2013, 5, 749-773.

Abstract

This paper develops mathematical models of the tragedy of the commons analogous to ecological models of resource consumption. Tragedies differ fundamentally from predator–prey relationships in nature because human consumers of a resource are rarely controlled solely by that resource. Tragedies do occur, however, at the level of the ecosystem, where multiple species interactions are involved. Human resource systems are converging rapidly toward ecosystem-type systems as the number of exploited resources increase, raising the probability of system-wide tragedies in the human world. Nevertheless, common interests exclusive of exploited commons provide feasible options for avoiding tragedy in a converged world.

PNAS: Late Cretaceous restructuring of terrestrial communities facilitated the End-Cretaceous mass extinction in North America

30 Tuesday Oct 2012

Posted by proopnarine in CEG theory, Ecology, Evolution, extinction, Robustness, Scientific models, Tipping point

≈ 1 Comment

Tags

Cretaceous, dinosaurs, extinction, food webs, mass extinction, modeling, networks, paleo-food web, paleontology, Robustness, Scientific models, simulations, Tipping point, trophic guild

That’s the title of our new paper, hot off the PNAS press. This study was a lot of fun, because it combines my food web work with one of the best known events in the fossil record. The lead author is Jonathan Mitchell, a graduate student at the University of Chicago. Jon became familiar with the food web work via Ken Angielczyk at the Field Museum, also in Chicago, a former post-doctoral researcher in my lab and close collaborator.  Jon wondered what Late Cretaceous, dinosaur-bearing communities would look like when subjected to CEG perturbations (just search this blog for info. on CEG!), and presented his results two years ago at the Annual Meeting of the Geological Society of America. The results were so intriguing that we decided then to explore the question in much greater detail, and ask what sorts of community and ecosystem changes unfolded in the years before the Chicxulub impact, and what role they might have played in the subsequent extinctions. And here are the results! I will list the full reference below, and you can obtain a complete copy of the paper from PNAS (sorry, not open access). Also, here are links to some news websites that have covered the paper, as well as the paper’s abstract. Enjoy!

EurekAlert, Science Daily, Science Codex

Jonathan S. Mitchell, Peter D. Roopnarine, and Kenneth D. Angielczyk. Late Cretaceous restructuring of terrestrial communities facilitated the End-Cretaceous mass extinction in North America. PNAS, October 29, 2012

ABSTRACT

The sudden environmental catastrophe in the wake of the end-
Cretaceous asteroid impact had drastic effects that rippled through
animal communities. To explore how these effects may have been
exacerbated by prior ecological changes, we used a food-web
model to simulate the effects of primary productivity disruptions,
such as those predicted to result from an asteroid impact, on ten
Campanian and seven Maastrichtian terrestrial localities in North
America. Our analysis documents that a shift in trophic structure
between Campanian and Maastrichtian communities in North
America led Maastrichtian communities to experience more second-
ary extinction at lower levels of primary production shutdown and
possess a lower collapse threshold than Campanian communities.
Of particular note is the fact that changes in dinosaur richness had
a negative impact on the robustness of Maastrichtian ecosystems
against environmental perturbations. Therefore, earlier ecological
restructuring may have exacerbated the impact and severity of the
end-Cretaceous extinction, at least in North America.

The Cuban coral reef food web

17 Thursday May 2012

Posted by proopnarine in Coral reefs, Visualization

≈ 1 Comment

Tags

biodiversity, coral reef, coral reef food web, food webs, graph, invertebrates and vertebrates, marine communities, networks, prey and predator, real world networks, sfdp

This is a rendering of the Cuban coral reef food web from our set that also includes the Cayman Islands and Jamaica. All the data will be made available very soon in an upcoming publication. This is a metanetwork, or guild-level web where nodes represent one or more species with indistinguishable prey and predator links. There is a total of 266 guilds (nodes) in the network with 3899 interactions (edges) between them. The guilds in turn encompass 860 species, including protists, macroalgae, seagrasses, invertebrates and vertebrates. Colour codes: red – primary producers; yellow – invertebrates and heterotrophic protists; magenta – vertebrates.

The web or network was rendered with Graphviz using the neato algorithm (though sfdp also produces very pleasing images). Total cpu time varied between 1-4 seconds depending on options and machine.

← Older posts

Blog Stats

  • 66,357 hits

Categories

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 1,373 other followers

Copyright

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Blog at WordPress.com.

  • Follow Following
    • Roopnarine's Food Weblog
    • Join 1,373 other followers
    • Already have a WordPress.com account? Log in now.
    • Roopnarine's Food Weblog
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...